Two New Cardenolide Glycosides from Biondia hemsleyana

Xing Gen TAN, Xiao Rong ZHANG, Ming Kui WANG, Shu Lin PENG, Li Sheng DING*
Chengdu Institute of Biology, The Chinese Academy of Sciences, Chengdu 610041

Abstract

Two new cardenolide glycosides, biondianosides A and B, were isolated from the roots of endemic plant of Biondia hemsleyana (Warb.) Tsiang. Their structures were elucidated as periplogenin-3-O- -D-glucopyranosyl-($1 \rightarrow 6$)- -D-glucopyranosyl-($1 \rightarrow 4$)- -D-cymaropyranosid e (1) and 17 H-periplogenin-3-O- -D-cymaropyranoside (2) by the spectroscopic and chemical methods.

Keywords: Biondia hemsleyana, cardenolide glycoside, biondianosides A and B.

Biondia hemsleyana (Warb.) Tsiang (Asclepiadaceae), an endemic plant mainly in southwestern China, is used as a chinese medicine for treating stomachache ${ }^{1}$. The chemical constituents of the genus Biondia were not reported until now. From the ethanolic extract of the roots of B. hemsleyana, two new cardenolide glycosides, named biondianosides A and B, were isolated by repeated column chromatography on normal and reversed phase silica gel.

Figure 1 The key HMBC correlations for $\mathbf{1}$ and $\mathbf{2}$

2

Biondianoside A (1), $[\alpha]_{D}^{20}-14.7(\mathrm{MeOH} ; ~ c ~ 2.2)$, was obtained as white powder (55 mg). Its molecular formula was assigned as $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{O}_{18}$ by HR-ESI-MS([M+Na] ${ }^{+}$ m / z 881.4167, calc. 881.4149). The positive Liebermann-Burchardt and Kedde tests indicated it to be a cardenolide confirmed by the ${ }^{1} \mathrm{HNMR}$ signals at $\delta 6.07$ (brs, $\mathrm{H}-22$), $5.25,4.99$ (brd, each $1 \mathrm{H}, J=18.0 \mathrm{~Hz}, \mathrm{H}_{2}-21$), $4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.75$ (m, H-17), 0.96 and 0.94 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$). By comparing the ${ }^{13} \mathrm{CNMR}$ data of $\mathbf{1}$ with those of periplocin ${ }^{2}, \mathbf{1}$ had one more glucose attached to the C-6 of the inner glucose according to
the glycosylation shift. The glucose, cymarose and periplogenin (ESI-MS m / z : $391[\mathrm{M}+\mathrm{H}]^{+}$) were detected by acid hydrolysis of $\mathbf{1}$. The ESI-MS/MS signals at $\mathrm{m} / \mathrm{z} 857$ [M-H] ${ }^{-}, 695$ [M-163], 533 [M-163-162] and 389 [M-163-162-144] showed 1 has two hexose and a dideoxy- O-methylhexose. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$, three anomeric proton signals at $\delta 5.07(\mathrm{brd}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.95(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$ and $4.75(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.7 \mathrm{~Hz}$) indicated the three sugars were -configuration. Finally, by the HMBC correlations (Figure 1), 1 was confirmed as periplogenin-3- O - -D-glucopyranosyl$(1 \rightarrow 6)$ - -D-glucopyranosyl-($1 \rightarrow 4$)- -D-cymaropyranoside.

Biondianoside $\mathrm{B}(\mathbf{2}),[\alpha]_{\mathrm{D}}^{20}+34.3(\mathrm{MeOH} ; ~ с 2.1)$, was obtained as white powder (18mg). Its molecular formula was assigned as $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{8}$ by HR-ESI-MS([M+Na] ${ }^{+} \mathrm{m} / \mathrm{z}$ 557.3137, calc. 557.3092). The positive Liebermann-Burchardt and Kedde tests indicated the presence of a cardenolide supported by the ${ }^{1} \mathrm{HNMR}$ signals at $\delta 5.95$ (brs, $\mathrm{H}-22$), 4.88, 4.80 (brd, each $1 \mathrm{H}, J=18.0 \mathrm{~Hz}, \mathrm{H}_{2}-21$), $4.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.07(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-17$), 0.90 and 0.81 (s, each $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$). By comparing the NMR data of 2 with those of 1, the methine proton signal of $\mathrm{H}-17$ was shifted downfield to $3.07(\mathrm{~m}, 1 \mathrm{H})$, and the C-12 signal was shifted upfield to $\delta 30.6$ showing that $\mathrm{H}-17$ has the β-configuration ${ }^{3}$. The ESI-MS signals at $m / z 557[\mathrm{M}+\mathrm{Na}]^{+}, 391[\mathrm{M}-143]^{+}$showed that 2 has a dideoxy- O-methylhexose. Cymarose was detected by TLC acid hydrolysis of 2. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$, the anomeric proton signal at $\delta 4.69$ (brd, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}$) showed that 2 was a β-linking cardenolide monoglycoside. The HMBC correlations (Figure 1) confirmed $\mathbf{2}$ as $17 \beta \mathrm{H}$-periplogenin-3-O- β-D- cymaropyranoside.

Table 1 The ${ }^{13} \mathrm{CNMR}$ spectral data of $\mathbf{1}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ and $\mathbf{2}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$

C	1	2	C	1	2	C	1
1	25.6(t)	25.2(t)	16	26.9(t)	23.9(t)	Glc-1"	105.1(d)
2	26.0(t)	25.4(t)	17	50.9(d)	48.0(d)	2 "	74.7(d)
3	74.7(d)	74.6(d)	18	15.9(q)	18.1(q)	3"	77.9(d)
4	34.9(t)	34.4(t)	19	16.8(q)	16.8(q)	$4 \prime$	71.3(d)
5	73.5(s)	73.0(s)	20	175.9(s)	173.6(s)	$5 \prime$	76.5(d)
6	34.9(t)	34.5(t)	21	73.5(t)	73.6(t)	6 "	70.3(t)
7	23.9(t)	22.9(t)	22	117.2(d)	115.3(d)	Glc-1"'	106.0(d)
8	40.6(d)	39.7(d)	23	174.5(s)	173.4(s)	$2^{\prime \prime \prime}$	75.4(d)
9	38.8(d)	38.1(d)	Cym-1'	97.0(d)	96.2(d)	$3^{\prime \prime \prime}$	78.0(d)
10	40.8(s)	40.1(s)	$2 '$	36.1(t)	34.8(t)	$4^{\prime \prime \prime}$	71.4(d)
11	21.7(t)	20.3(t)	3^{\prime}	77.8(d)	77.5(d)	$5^{\prime \prime \prime}$	78.0(d)
12	39.6(t)	30.6(t)	4^{\prime}	82.8(d)	72.7(d)	$6^{\prime \prime \prime}$	62.3(t)
13	49.7(s)	48.2(s)	5^{\prime}	69.2(d)	69.8(d)		
14	84.4(s)	84.3(s)	6^{\prime}	18.3(q)	18.4(q)		
15	32.7(t)	30.2(t)	OCH_{3}	58.3(q)	57.7(q)		

References

1. H. Y. Zhang, Z. Y. Zhang, The handbook of Traditional Chinese Medicine Sources in China, Beijing: Science Press, 1994, 973.
2. Y. J. Hu, Q. Z. Mu, Acta Botanica Yunnanica, 1989, 11 (4), 465.
3. K. Kawaguchi, M. Hirotani, T. Furuya, Phytochemistry, 1991, 30 (5), 1503.

Received 30 August, 2001

